
Optimal Test Access Architectures for System-on-a-Chip

Krishnendu Chakrabarty

Department of Electrical and Computer Engineering

Duke University

130 Hudson Hall, Box 90291

Durham, NC 27708

Phone: (919) 660-5244

FAX: (919) 660-5293

E-mail: krish@ee.duke.edu

ABSTRACT

Test access is a major problem for core-based system-on-a-chip (SOC) designs. Since embedded

cores in an SOC are not directly accessible via chip inputs and outputs, special access mechanisms

are required to test them at the system level. An e�cient test access architecture should also reduce

test cost by minimizing test application time. We address several issues related to the design of

optimal test access architectures that minimize testing time. These include the assignment of cores

to test buses, the distribution of test data width between multiple test buses, and an analysis

of test data width required to satisfy an upper bound on the testing time. Even though the

decision versions of all these problems are shown to be NP-complete, they can be solved exactly

for practical instances using integer linear programming (ILP). As a case study, the ILP models for

two hypothetical but non-trivial systems are solved using a public-domain ILP software package.

Keywords: Embedded core testing, integer linear programming, test access mechanism (TAM),

test bus, test data width, testing time.

?This research was supported in part by the National Science Foundation under grant number CCR-9875324.
An abridged version of this paper appeared in Proc. IEEE VLSI Test Symposium, pp. 127-134, Montreal, Canada,
May 2000.

1

1 Introduction

Embedded cores are now being increasingly used in large system-on-a-chip (SOC) designs [21].

These complex, pre-designed functional blocks facilitate design reuse, allow greater on-chip func-

tionality, and lead to shorter product development cycles. However, the manufacturing test and

debug of such SOC designs remains a major challenge. Since embedded cores are not directly

accessible via chip inputs and outputs, special access mechanisms are required to test them at

the system level. The development of e�cient test access architectures is therefore of considerable

interest to the SOC design and test community.

A test access architecture, also referred to as a test access mechanism (TAM), provides means

for on-chip test data transport [21]. It can be used to transport test patterns from a pattern source

to a core-under-test, and to transport test responses from a core-under-test to a response monitor.

A number of test access architectures have been proposed in the literature [21]. These include

macro test [2], core transparency [12, 13], dedicated test bus [19], and multiplexed access [15], and

a bus architecture based on the concept of a TESTRAIL [16]. A TESTRAIL provides a exible

and scalable test access mechanism; a single TESTRAIL can provide access to one or more cores,

and an IC may contain one or more TESTRAILs of varying widths. The width of a TESTRAIL

is referred to as the test data width since it determines the overall system testing time. Figure 1,

derived from [16], illustrates one possible implementation of the TESTRAIL architecture. (The

core wrapper and the bypass mechanism are not explicity shown in the �gure.)

In order to reduce test cost, the testing time for a core-based system should be minimized

by adopting an appropriate test access architecture. While the TESTRAIL architecture allows

the system designer to trade o� testing time with area overhead by varying tests data widths,

the precise relationship between the testing time and the test access architecture has not been

formally studied. Related prior work has either been limited to test scheduling for a given test

access mechanism [6, 7, 20], or to determine the optimal number of internal scan chains in the cores

[1]. The latter requires redesign of the scan chains for each customer and thereby a�ects core reuse.

While [1] presents several novel strategies for TAM design (e.g. multiplexing, daisy chaining and

distribution), it does not directly address the problem of optimal sizing of test buses in the SOC.

We are interested here in the problem of minimizing the SOC testing time via optimal test bus

design and without any redesign of the embedded cores. The design of the test access architecture

is especially important for the system designer/integrator since the IEEE P1500 standard, which

is being developed for embedded core testing, leaves TAM design upto the system integrator [17].

The system integrator is interested in the following TAM design problems: (1) Given an SOC

and maximum test data width, how should the width be distributed among the various test buses in

order to minimize the testing time? (2) How should the embedded cores in the system be assigned

2

32

16

16

8

16

16

16

16

10

2

Core A

Core B Core C

Core D

Core E

Core G

10 10
Core F

10

Figure 1: An example of the TESTRAIL architecture.

to the test buses? (3) For a given test access architecture, how much test data width is required to

meet speci�ed testing time objectives? To the best of our knowledge, this paper presents the �rst

systematic solutions to these SOC design problems.

The main contributions of the paper are listed below.

� We formulate several design problems related to test access architectures, and show that the

decision versions of all these problems are NP-complete.

� Even though these design problems are NP-complete, we show that they can be solved exactly

using integer linear programming (ILP). We �rst develop an ILP model for optimally assigning

cores to test buses when the widths of these test buses are known. We refer to this as the

\test bus assignment problem".

� We note that the testing time can be reduced further by optimally distributing the total test

width among the individual test buses. We develop an ILP model for minimizing the testing

time by combining optimal width distribution with optimal test bus assignment.

� Given a constraint on the maximum testing time, we develop an ILP model to determine the

minimum test data width and an optimal assignment of cores to test buses.

� The above ILP models make the simplifying assumption that a test bus cannot be subdivided

into test buses of smaller width which subsequently merge before the test data is transported

3

to the IC outputs. In order to account for this realistic scenario, we re�ne our ILP models to

allow a test buses to fork into test buses of smaller width.

� We evaluate the feasibility of the proposed ILP models by solving them using an ILP solver

for two hypothetical, but non-trivial and representative SOCs. The experimental results

demonstrate that optimal solutions to these important design problems in SOC testing are

indeed feasible.

Our ILP models do not address the problem of testing the interconnect and wiring between the

cores. A complete solution for SOC testing that also addresses these issues requires enhancements

to the basic ILP framework that is presented here for isolation testing of embedded cores.

The organization of the paper is as follows. In Section 2, we briey review integer linear

programming and formulate the problem of optimal test bus assignment. In Section 3, we develop

ILP models for minimizing the testing time by determining an optimal test width distribution.

In Section 4, we present case studies for two example SOCs (described below). We solve the

various ILP models for this system using the lpsolve software package from Eindhoven University

of Technology [3]. Finally, in Section 5, we extend our basic ILP models to handle cases where a

test bus may fork into several test buses that subsequently merge before the test data is transported

to the IC outputs. We present experimental results on optimal and near-optimal subdivision of the

test buses.

In order to illustrate the proposed optimization methods, we use the core-based SOCs S1 and

S2 shown in Figure 2 as examples throughout the paper. These hyopthetical but non-trivial SOCs

consist of ten ISCAS 85 [4] and ISCAS 89 benchmark circuits [5] each. We assume that the three

ISCAS 89 circuits contain internal scan chains. S1 contains seven combinational cores and seven

sequential cores, while S2 consists of two combinational cores and eight sequential cores. The

complexity of the ILP models depends more on the number of cores in the SOC than on the sizes of

the cores. For the sake of illustration, only two test buses are shown in Figure 2. Our ILP models

can be easily used for any number of test buses.

2 Optimal assignment of cores to test buses

We �rst briey review ILP using matrix notation [18]. The goal of ILP is to minimize a linear

objective function on a set of integer variables, while satisfying a set of linear constraints. A typical

ILP model is described as follows:
minimize: Ax

subject to: Bx � C, x � 0,

where A is a cost vector, B is a constraint matrix, C is a column vector of constants, and x is a

vector of integer variables. E�cient ILP solvers are now readily available, both commercially and

4

Core 1
(c432)

Core 2
(c499)

Core 3
(c880)

Core 4
(c1355)

Core 5
(c3540)

Core 6
(c6288)

Core 7
(c7552)

Core 8
(s5378)

Core 9
(s35932)

Core 10
(s38417)

. . .

.

. . .
.

. . .

.

.

Combinational core Sequential core

Internal
scan chain (s)

Test bus 1

Test bus 2

Core 1
(c6288)

Core 2
(c7552)

Core 3
(s838)

Core 4
(c9234)

Core 5
(s38584)

Core 6
(s13207)

Core 7
(s15850) Core 8

(s5378)

Core 9
(s35932)

Core 10
(s38417)

. . .

.

. . .
.

. . .

.

.

(a) (b)

Figure 2: Two examples of core-based SOCs with two test buses each: (a) System S1 contain-
ing seven combinational cores and three cores with internal scan; (b) System S2 containing two
combinational cores and eight cores with internal scan.

in the public domain. For our experiments (described in Sections 4 and 5), we used the lpsolve

package from Eindhoven University of Technology in the Netherlands.

Let the SOC design consist of NC cores, and let core i, 1 � i � NC , have ni inputs and mi

outputs. We assume that the ni inputs of core i include data inputs and scan inputs. Similarly,

the mi outputs of core i include data outputs and scan outputs. Each full or partial scan core may

have one have one or more internal scan chains. (A combinational or non-scan legacy core has no

scan inputs and outputs.)

Test data serialization is required at core I/Os when the width of the test bus is less than

the number of core terminals [17]. This happens often because the number of core terminals is

determined by the functionality of the core, while the test bus width is determined by the test

pattern source, the SOC routing and area constraints, and in some cases, the width of the existing

system bus. Therefore, test data serialization must be performed in the test wrapper if the number

of core terminals is larger than the test bus width.

We assume in our serialization model that the test sets for the SOC cores are available in

scan format, in which the functional input values remain unchanged during successive scan cycles.

(If the test sets for the cores are obtained before the translation to scan format, then alternative

5

serialization models involving the lengths of the scan chains in the cores can be used to reduce

the testing time even further.) The amount of test data serialization necessary at the inputs and

outputs of core i is therefore determined by its test width �i = maxfni;mig. This inuences the

testing time for core i. We assume that core i requires ti (scan) cycles for testing. Finally, we

assume that the system contains NB test buses with widths w1; w2; : : : ; wNB , respectively.

The problem that we address in this section is to minimize the system testing time by optimally

assigning cores to test buses. It is formally stated as follows:

� P1: Given NC cores and NB test buses of widths w1; w2; : : : ; wNB , respectively, determine an

assignment of cores to test buses such that the total testing time is minimized.

Note that P1 is equivalent to the well-known multiprocessor scheduling problem, and is there-

fore NP-complete ([11], page 65). The multiprocessor scheduling problem is stated as follows:

INSTANCE: A �nite set A of \tasks", a "length" l(a) > 0 for each a 2 A, a number m > 0 of

\processors", and a deadline D > 0.

QUESTION: Is there a partition A = A1

S
A2

S
� � �
S
Am of A into m disjoint sets such that

maxf
P

a2A l(a) : 1 � i � mg � D?

The equivalence between a decision version of P1 and multiprocessor scheduling can be easily es-

tablished by noting the correspondence between processors and test buses, and between tasks and

test sets. The deadline D corresponds to the overall SOC testing time.

Even though P1 is NP-complete, we show that as in the case of many other NP-complete

problems, it can be solved exactly for practical instances using integer linear programming. We

assume for now that a test bus does not fork (split) into multiple branches which may merge later.

This restriction will be removed in Section 5. We also assume that all cores on any given test bus

are tested sequentially. Two or more test buses can be used simultaneously for delivering test data

to cores and for propagating test responses. We assume that the number of test buses (and thereby

the amount of test parallelism) is determined by the core user (system integrator) after a careful

consideration of system-level I/O, area, and power dissipation issues.

We �rst note that if core i is assigned to bus j, then the testing time for core i is given by

Tij =

(
ti; if �i � wj

(�i �wj + 1)ti; if �i > wj
(1)

If �i > wj then the width of the test bus is insu�cient for parallel loading of test data, and

serialization is necessary at the inputs and/or outputs of core i. In order to calculate the test

time due to serialization, we use an interconnection strategy similar to the one suggested in [16]

for connecting core I/Os to the test bus, namely, provide direct (parallel) connection to core I/Os

that transport more test data. We assume a \worst case" scenario of test data serialization, in

which the �rst (wj � 1) test bus lines are connected to (wj � 1) core I/Os in parallel and the last

6

Core

Test bus

Scan chain

Test bus

Core

Scan chain

Wrapper

Figure 3: Illustration of the serialization model.

test bus line is serially connected to the remaining (�i � wj + 1) core I/Os; see Figure 3. This

can potentially reduce the amount of interconnect within the wrapper. If the width of bus j is

adequate, i.e. �i � wj , then no serialization is necessary and core i can be tested in exactly ti

cycles.

Let xij be a 0-1 variable de�ned as follows:

xij =

(
1, if core i is assigned to bus j
0, otherwise

The time needed to test all cores on bus j is therefore
PNC

i=1 Tijxij. Since all the test buses can

be used simultaneously for testing, the system testing time equals maxj2f1;2;:::NBg
PNC

i=1 Tijxij. We

now formulate an integer programming model for minimizing the system testing time.

Objective: Minimize the cost function C = maxj2f1;2;:::NBg
PNC

i=1 Tijxij subject to

1.
PNB

j=1 xij = 1, 1 � i � NC

2. xij = 0 or 1

The above minmax nonlinear cost function can easily be linearized [18]. The resulting integer

linear programming model is shown in Figure 4. It can be easily seen that the integer linear

program ILP model for P1 contains NBNC 0-1 variables, one non-binary, integer variable, and

NB +NC + 2NBNC constraint inequalities.

As an example, we consider the SOCs S1 and S2 introduced in Section 1. Table 1 presents the

test data for each embedded core in these systems. We assume that s838 contains one internal scan

chain, and s5378 and s9234 contain 4 internal scan chain each. We also assume that s35392 and

s38417 contain 32 internal scan chains each, and s13207 and s15850 contain 16 scan chains each.

7

Minimize C subject to:

1. C �

NCX
i=1

Tijxij , 1 � j � NB

2.

NBX
j=1

xij = 1, 1 � i � NC

3. xij = 0 or 1

Figure 4: Integer linear programming model for P1.

For the combinational cores, 1 � i � 7, the number of test cycles ti is equal to the number of test

patterns pi. However, for the remaining three cores with internal scan, ti = (pi + 1)dfi=Nie + pi,

where core i contains fi ip-ops and ni internal scan chains [1]. The test patterns for these circuits

were obtained from [14].

Example: Let NB = 2, and let the total test data width for S1 be 48 bits, i.e. w1 + w2 = 48.

In addition, let w1 = 32 and w2 = 16. The optimal assignment of cores to these two test buses is

given by the vector (1,1,1,1,1,1,1,2,2,1), where a 1 (2) in position i of the vector indicates that core

i is assigned to bus 1 (2). This is shown in Figure 5. The optimal testing time for these values of

w1 and w2 obtained using lpsolve is 411884 cycles. Note that this is not the minimum testing time

that can be achieved with a total test width of 48 bits. For example, a testing time of 408077 cycles

is achieved using w1 = 28, w2 = 20, and the test bus assignment vector (1,1,2,1,2,1,2,2,2,1). In the

next section, we will examine the problem of determining an optimal distribution of the total test

data width among the individual test buses.

The following theorem presents a lower bound on the total testing time when the widths of

the test buses are known. This lower bound can indeed be achieved in practice|we illustrate this

below using the system S1 as an example. We also make use this theorem in Section 3 to derive

a lower bound on the testing time when only the total test data width is known and the optimal

widths of the test buses have to be determined.

Theorem 1 For an SOC with NC cores and NB test buses with widths w1; w2; : : : wNB , respectively,

a lower bound on the total testing time T is given by

T � max
i
fmin

j
fTijgg

where �i is the test width of core i and Tij is de�ned by (1).

Proof: The testing time for core i depends on the width of the test bus to which it is assigned.

Clearly, the testing time for core i is at least min
j
fTijg. Since the overall system testing time is

8

Number Number Number Number
Circuit of test of test �i = of test of test
(core) i inputs ni outputs mi maxfni;mig patterns pi cycles ti
c432 1 36 7 36 27 27
c499 2 41 32 41 52 52
c880 3 60 26 60 16 16
c1355 4 41 32 41 84 84
c3540 5 50 22 50 84 84
c6288 6 32 32 32 12 12
c7552 7 207 108 207 73 73
s5378 8 39 53 53 97 4507
s35932 9 67 352 352 12 714
s38417 10 60 138 138 68 3656

(a)

Number Number Number Number
Circuit of test of test �i = of test of test
(core) i inputs ni outputs mi maxfni;mig patterns pi cycles ti
c6288 1 32 32 32 12 12
c7552 2 207 108 207 73 73
s838 3 36 3 36 75 2507
s9234 4 40 43 43 105 5723
s38584 5 70 336 336 110 5105
s13207 6 78 168 168 234 9634
s15850 7 93 166 166 95 3359
s5378 8 39 53 53 97 4507
s35932 9 67 352 352 12 714
s38417 10 60 138 138 68 3656

(b)

Table 1: Test data for the cores in S1 and S2.

determined by the core that has the longest test time, T � max
i
fmin

j
fTijgg. 2

For the system S1 with two test buses of 32 bits and 16 bits, respectively, Theorem 1 provides

a lower bound on the testing time of 391190 cycles. This corresponds to a test bus assignment in

which only core 10 is assigned to the 32-bit �rst test bus. Such an assignment is indeed optimal

and the lower bound of Theorem 1 is achieved if the width of the second test bus is increased, or

if a third test bus is used.

The ILP model presented in this section can also be used for optimally assigning cores to

test buses for more general test access architectures. For example, Figure 6 shows a test access

architecture consisting of two test buses in which the 20-bit test bus forks into two sets of buses,

which in turn merge into the original 20-bit-wide test bus. If we use this test bus architecture for

S1, then a minimum testing time of 407991 cycles is obtained using the test bus assignment vector

(1,2,2b,2,1,2a,2,2,2,1). A more general discussion of this problem is presented in Section 5.

9

C
o

re
 1

0
(s

3
8

4
1

7
)

Core 1
(c432)

Core 2
(c499)

Core 3
(c880)

Core 4
(c1355)

Core 5
(c3540)

Core 6
(c6288)

Core 7
(c7552)

Core 8
(s5378)

Core 9
(s35932)

Test bus 1

Test bus 2

32

16 32
16

Figure 5: Optimal test bus assignment for system S1 with two test buses of 32 bits and 16 bits,
respectively.

3 Optimal test bus width

In this section, we examine the problem of minimizing system testing time by determining (i)

optimal widths for the test buses, and (ii) optimal assignment of cores to test buses. This generalizes

the optimization problem discussed in Section 2. We assume that the total system test width can

be at most W . We also assume that the width of a test bus does not exceed the width required

for any given core, i.e. max
j
fwjg � min

i
f�ig for all values of i and j, and test data serialization is

required for every core. This assumption is necessary to avoid complex non-linear models that are

di�cult to linearize. From a practical point of view, this assumption implies that cores with very

small test widths are assigned to test buses after the cores with larger test widths are optimally

assigned. We will extend the ILP model and remove this restriction in Section 4.

We now formulate the problem of optimally allocating the total width among the NB buses,

as well as determining the optimal allocation of cores to these buses. The optimization problem is

formally stated as follows:

� P2: Given NC cores and NB test buses of total width W , determine the optimal width of

the test buses, and an assignment of cores to test buses such that the total testing time is

minimized.

10

28

20 19

1

Test bus 1

Test bus 2

Test bus 2a

Test bus 2bFork

Merge

20

Figure 6: A test bus architecture involving fork and merge of test buses.

Theorem 2 P2 is NP-complete.

Proof: To show that P2 belongs to NP, we consider the following decision problem version of P2:

Given NC cores and NB test buses of total width W , does there exist a a width distribution for

the test buses, and an assignment of cores to test buses such that the total testing time is less

than or equal to T ? A nondeterministic algorithm can guess a width distribution and a test bus

assignment for the cores, and check in polynomial time if the testing time is less than or equal to

T . To show that P2 is NP-hard, we use the method of restriction [11]. Consider an instance of

P2 for which the W = NBmin
i
f�ig. Since the width of a test bus is at least min

i
f�ig, this implies

that every test bus has a width of min
i
f�ig. This is equivalent to an instance of P1 which, as we

discussed in Section 2, is NP-complete. Therefore, P2 is NP-hard. 2

Even though P2 is NP-complete, the sizes of practical SOC problem instances allow it to be

solved exactly. We now present an integer programming model for P2, which allows us to determine

optimal widths and an optimal assignment of cores to buses simultaneously. We use the 0-1 variable

xij de�ned in Section 2.

Minimize C subject to:

1) C �
PNC

i=1(�i � wj + 1)tixij , 1 � j � NB

2)
PNB

j=1 xij = 1, 1 � i � NC

3)
PNB

j=1wj =W , 1 � j � NB

4) wj � �i, 1 � i � NC , 1 � j � NB

5) xij = 0 or 1

Note that constraint 1) above is non-linear since it contains a product term. We linearize it by

replacing the product term wjxij with a new integer variable yij (yij � 0), and adding the following

three constraints for every such product term:

11

Minimize C subject to:

1. C �

NCX
i=1

((�i + 1)tixij � tiyij), 1 � j � NB

2. yij � wmaxxij � 0, 1 � i � NC , 1 � j � NB, where wmax is an upper bound on the wj 's.

3. �wj + yij � 0, 1 � i � NC , 1 � j � NB

4. wj � yij + wmaxxij � wmax, 1 � i � NC , 1 � j � NB

5.
PNB

j=1 xij = 1, 1 � i � NC

6.
PNB

j=1 wj = W

7. wj � �i, 1 � i � NC , 1 � j � NB

8. xij = 0 or 1

Figure 7: Integer linear programming model for P2.

1. yij �wmaxxij � 0, where wmax =W is an upper bound on the widths of the test buses.

2. �wj + yij � 0

3. wj � yij + wmaxxij � wmax

The intuitive reasoning behind the above three constraints is as follows. Since xij can take

only 0-1 values, yij is restricted to be either 0 (if xij = 0) or wj (if xij = 0). This implies that

0 � yij � wmax. The three additional inequalities are necessary and su�cient to constrain the

values that yij can take. This leads us to the (linearized) ILP model for P2 shown in Figure 7.

As expected, the ILP model for P2 is bigger in size than the ILP model for P1. It contains

NBNC 0-1 variables, NCNB +NB + 1 nonbinary, integer variables, and (6NBNC +NB +NC + 1)

constraint inequalities. The ILP model for P2 is especially useful in determining the e�ect of

increased test data width on the testing time. However, there is a limit to which the testing time

can be decreased by simply increasing the system test width. The following theorem provides a

lower bound on the testing time T for a core-based system. It is useful in determining the maximum

test width beyond which the testing time cannot be decreased by simply increasing width.

Theorem 3 For a core-based system with NC cores, a lower bound on the total testing time T is

given by

T � max
i2f1;2;:::;NCg

f(�i �min
k
f�kg+ 1)tig

12

Proof: Let the system consist of NB test buses with (undetermined) test widths w1; w2; : : : wNB

such that min
k
f�kg � max

j
fwjg. We know from Theorem 1 that

T � max
i
fmin

j
f(�i � wj + 1)tigg

Since min
j
f(�i � wj + 1)tig = (�i �max

j
fwjg+ 1)ti, and max

j
fwjg � min

k
f�kg, we have

T � max
i
f(�i �max

j
fwjg+ 1)tig

� max
i
f(�i �min

k
f�kg+ 1)tig

This completes the proof of the theorem. 2

We next address the related optimization problem of determining the minimum system test

width required to meet a minimum testing time objective. In addition, we determine an opti-

mal distribution of the width among the test buses, and an optimal test bus assignment. The

optimization problem is formally stated as follows:

� P3: Given NC cores, NB test buses, and a maximum testing time T , determine the minimum

total test width, an optimal distribution of the test width among the test buses, and an

optimal assignment of cores to test buses.

Theorem 4 P3 is NP-complete.

Proof: Once again, using the same strategy as in the Proof of Theorem 2, it is straightforward to

show that P3 belongs to NP. To show that P3 is NP-hard, we polynomially transform an arbitrary

instance of the known NP-complete problem P2 to an instance of P3. Consider an instance of P2

parameterized by (NC ; NB ;W), with the decision problem version checking if the testing time is

less than or equal to T . The corresponding instance of P3 that we consider is parameterized by

(NC ; NB ;T). Suppose a solution to P3 is obtained in polynomial time with a width of W ?. We

now check if W ? �W . This provides a solution in polynomial time for P2. Thus we conclude that

P3 is NP-hard, and therefore NP-complete. 2

As in the case of P2, even though P3 is NP-complete, it can be solved exactly for instances of

realistic core-based systems. The ILP model for P3 can be derived directly from P2 and is shown

in Figure 8. This model is of the same size as that for P2, i.e. it has the same number of variables

and constraints. The following theorem relates the width of the widest test bus to the minimum

testing time T and the test widths of the cores.

Theorem 5 Let fw1; w2; : : : ; wNBg be the optimal width distribution for a core-based system with

NC cores and maximum testing time T . A lower bound on the width of the widest test bus is given

by

max
j
fwjg � max

i
f�(i) � T =ti + 1g

13

Minimize W subject to:

1.
PNB

j=1 wj = W

2.
PNC

i=1((�i + 1)tixij � tiyij) � T , 1 � j � NB

3. yij � wmaxxij � 0, 1 � i � NC , 1 � j � NB, where wmax is an upper bound on the wj 's.

4. �wj + yij � 0, 1 � i � NC , 1 � j � NB

5. wj � yij + wmaxxij � wmax, 1 � i � NC , 1 � j � NB

6.
PNB

j=1 xij = 1, 1 � i � NC

7. wj � �i, 1 � i � NC , 1 � j � NB

8. xij = 0 or 1

Figure 8: Integer linear programming model for P3.

Proof: From the proof of Theorem 3, we know that

T � max
i2f1;2;:::;NCg

f(�i �max
j
fwjg+ 1)tig

Therefore, �i � max
j
fwjg + 1 � T =ti, 1 � i � NC . This implies that max

j
fwjg � �i � T =ti + 1,

1 � i � NC . 2

As examples, consider S1 with two test buses as shown in Figure 2. If an upper bound T =

430000 cycles is placed on the testing time, then Theorem 5 yields max
j
fwjg = 22. As demonstrated

in Table 3, this lower bound on the test bus width is achieved using the ILP model for P3, hence

Theorem 5 provides a tight lower bound.

4 Case studies

In this section, we present case studies using S1 and S2 for the optimization problems P2 and P3.

(Solutions for the optimization problem P1 were presented in Section 2.) We also remove some of

the restrictions that were imposed in Sections 2 and 3 in order to simplify the ILP models. We

solved the ILP models using the lpsolve software package on a Sun Ultra 10 workstation with a 333

MHz processor and 128 MB memory. We were unable to obtain actual CPU times from lpsolve;

however, the user time for P1 was less than one minute in all cases, while the user time for P2

and P3 was less than one hour in all cases|in fact, in most cases, the CPU time was only a few

minutes. The problem instances, while realistic and representative of real-world SOCs, are small

enough to be solved exactly using ILP.

Table 2 presents the optimal test data width, optimal width distribution, and test bus assign-

14

ment vector when two test buses are considered for S1 and S2. For S1, the lower bound of 391190

cycles predicted by Theorem 3 is reached for W = 56 bits. Any further increase in the system test

width W does not decrease testing time since the widest test bus can be at most minif�ig = 32

bits. Table 3 shows the optimal width and width distribution for S1 and S2 with two test buses for

various values of the maximum testing time T .

In Figure 9, we report experimental data for P2 and P3 when S1 contains three test buses. As

expected, for a given total test width, the testing time with three buses is less than with two buses;

see Figure 9(a). Not surprisingly, this di�erence becomes more pronounced as the total width

increases. Figure 9(b) shows the total width needed for two and three buses, respectively, for a

given maximum testing time T . As T increases, the di�erence between the two two cases decreases.

This is expected, since less stringent testing time requirements imply lower width requirements,

and decreases the need for more test buses.

Finally, we present experimental results for S2 when a greedy, heuristic test bus design is used.

The heuristic divides the total test width W equally among the two test buses. In the �rst set of

experiments, we solve P1 to determine the testing time and an optimal test bus assignment for this

equidistribution. In the second set of experiments, we simply calculate the testing time using the

assignment vector of Table 2. Table 4 lists the testing times for various values ofW . If P1 is applied

to S2 for an equidistribution of W , the testing time increases by 4%. For high-volume production,

this increase may translate to substantial incrases in test cost. If the test bus assignment vector

of Table 2 is used, the increase in testing time is as high as 15%. This motivates the need for an

optimal test bus design approach.

We next describe how the ILP models can be extended to remove the restriction maxjfwjg �

minif�ig. This is necessary to decrease the testing time below the limit of Theorem 3 if greater

test width is available. Let �ij be an \indicator" 0-1 variable de�ned as follows:

�ij =

(
1, if wj > �i
0, otherwise

The testing time Tij for core i assigned to test bus j can now be expressed as:

Tij = �ijxijti + (1� �ij)(�i � wj + 1)tixij

with the constraint that �ij(wj��i)+(1��ij)(�i�wj) � 0. The non-linear terms in this formulation

can be linearized as in Section 3, and the resulting ILP model can be easily solved to obtain optimal

width distribution and test bus assignment. We solved the ILP model for S2, and the results shown

in Table 5 indicate that signi�cant reductions in testing time are achieved, especially for higher

test widths.

The ILP formulation also allows us to sometimes decrease the test width of the cores in the

system, i.e. the number of lines that connect the cores to their respective test buses, without

15

Total test Optimal width Optimum Test bus assignment
width W distribution (w1; w2) testing time vector

8 (4,4) 497200 (2,2,2,1,2,1,2,2,2,1)
12 (6,6) 487940 (2,1,2,1,1,1,1,1,1,2)
16 (8,8) 478936 (2,2,2,2,2,2,2,2,2,1)
20 (11,9) 470380 (2,1,1,2,2,2,2,2,2,1)
24 (11,13) 461277 (2,1,1,1,1,1,1,1,1,2)
28 (16,12) 452781 (1,2,2,1,2,1,2,2,2,1)
32 (18,14) 443620 (2,1,2,2,2,2,2,2,2,1)
36 (21,15) 435042 (1,1,2,1,2,1,2,2,2,1)
40 (17,23) 426043 (2,2,2,1,1,1,2,1,1,2)
44 (25,19) 417057 (2,2,2,2,2,1,2,2,2,1)
48 (28,20) 408077 (1,1,2,1,2,1,2,2,2,1)
52 (22,30) 399290 (2,2,2,2,2,2,2,2,2,1)
56 (32,24) 391190? (2,2,2,2,2,2,2,2,2,1)
60 (32,28) 391190? (2,2,2,2,2,2,2,2,2,1)
64 (32,32) 391190? (2,2,2,2,2,2,2,2,2,1)

? Lower bound on the system testing time (Theorem 3)

(a)

Total test Optimal width Optimum Test bus assignment
width W distribution (w1; w2) testing time vector

16 (15,1) 2423712 (2,2,2,1,2,1,2,1,1,1)
20 (1,19) 2363126 (2,2,1,2,1,2,1,2,2,2)
24 (23,1) 2278443 (2,1,1,1,2,1,2,1,1,1)
32 (3,29) 2202286 (2,2,2,2,1,2,2,2,2,1)
36 (4,32) 2174501 (2,2,2,2,1,2,2,1,1,2)
40 (9,31) 2149720 (2,2,2,2,1,2,2,2,2,1)
44 (12,32) 2123437 (2,2,2,2,1,2,2,2,2,1)
48 (32,16) 2099390 (2,1,1,1,2,1,1,1,1,2)
52 (32,20) 2086542 (2,2,1,1,2,1,1,1,1,2)
56 (25,31) 2069738 (2,2,2,2,1,2,1,2,2,2)
60 (28,32) 2044346 (2,2,2,2,1,2,1,2,2,2)
64 (32,32) 2029753 (2,2,1,2,2,1,1,1,1,2)

(b)

Table 2: Optimum testing time and optimal width distribution with two test buses and a given
system test width for: (a) S1 (b) S2.

16

Maximum testing Optimal test Optimal width Test bus assignment
time T width W distribution (w1; w2) vector

400000 52 (21,31) (2,2,2,2,2,2,1,1,1,2)
410000 48 (27,21) (2,2,2,2,2,2,2,2,2,1)
420000 43 (25,18) (2,2,2,2,1,1,2,2,2,1)
430000 39 (22,17) (2,2,2,2,2,2,2,2,2,1)
440000 34 (19,15) (2,2,2,2,2,2,2,2,2,1)
450000 30 (16,14) (2,2,2,2,2,2,2,2,2,1)
460000 25 (14,11) (2,2,2,1,2,2,2,2,2,1)
470000 21 (11,10) (2,2,2,2,2,2,2,2,2,1)
480000 16 (8,8) (2,2,2,2,2,2,2,2,2,1)

Table 3: Optimal width and width distribution for S1 with two test buses and a given maximum
testing time.

Test bus Percentage Testing time Percentage
Total test assignment Testing increase for assignment increase
width W vector time over optimum of Table 2 over optimum

24 (2,2,2,2,2,1,1,1,1,2) 2383808 4.6 2573397 12.9
32 (2,2,2,1,1,1,2,1,1,2,2) 2306158 4.7 2523866 14.6
36 (2,1,2,2,2,1,1,1,1,2) 2274197 4.6 2511742 15.5
40 (2,1,2,2,2,1,1,1,1,2) 2237623 4.1 2417750 12.5

Table 4: Experimental results for a greedy test bus width distribution.

17

350000

370000

390000

410000

430000

450000

470000

490000

510000

530000

550000

8 14 16 22 26 32

buses

buses

Total width (bits)

O
pt

im
um

 te
st

in
g

tim
e

(c
yc

le
s)

Optimum testing time for 2

Optimum testing time for 3

(a)

0

10

20

30

40

50

60

Width needed for two
buses

Width needed for
three buses

Maximum testing time (cycles)

O
pt

im
al

 to
ta

l w
id

th
 (

bi
ts

)

40
00

00

41
00

00

42
00

00

43
00

00

44
00

00

45
00

00

46
00

00

(b)

Figure 9: Comparison of the optimal testing time and optimal width for S1 with two and three test
buses.

18

Total test Optimal width Optimum Test bus assignment
width W distribution (w1; w2) testing time vector

48 (40,8) 2020973 (2,2,2,1,2,1,1,1,2,1)
56 (42,14) 1967215 (2,2,2,1,2,1,1,1,2,1)
60 (43,17) 1940336 (2,2,2,1,2,1,1,1,2,1)
64 (53,11) 1937253 (2,2,2,2,2,1,1,1,1,1)
80 (48,32) 1867442 (2,1,2,2,2,1,1,1,2,1)

Table 5: Optimum testing time and optimal width distribution with two test buses and a given
system test width for S2 with no explicit bound on the width of the individual test buses.

Total test
width W w1 w2 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

20 1 19 4 3 1 17 1 19 1 18 17 18

32 3 29 1 12 29 26 3 29 29 28 29 3
36 4 32 1 16 32 32 4 32 31 4 4 30

40 9 31 7 6 31 28 9 31 31 30 31 9

Table 6: Reducing the test data width for each core in S2.

increasing the overall testing time. For example, if core i is connected to test bus j of width wj

then even though wj lines are available for propagating test data to and from core i, it is not always

necessary to use all these lines. This is especially the case if bus j is not the test bottleneck. In

such situations, bi < wj lines connect core i to test bus j. We refer to bi as the test width of core i.

The motivation for using smaller core test width lies in the reduction of routing and interconnect

area for SOC testing.

We allow bi to be less than wj in our ILP model by introducing the constraint xijbi � wj, which

implies that the test width for core i may be less than the width of test bus j if core i is assigned

to bus j. We also replace wj by bi in the expression for Tij. The product term xijbi does not pose

a problem since it is linearized for both P1 and P2. Table 6 shows how the test width cores in S2

can be reduced without increasing the system testing time.

5 Optimal subdivision of test buses

In this section, we allow the width of the test buses to be distributed among several buses with

smaller widths. This allows the wj bits of test bus j to be divided into several parts, each of which

can test one or more cores in parallel; for example, see Figure 6. For a given total test width, the

subdivision of test buses allows further reductions in the testing time. We �rst make the simplifying

19

assumption that the width wj for each test bus j is known. Later we will extend our model to the

case where the widths are not known and optimal widths have to be determined. The optimization

problem being considered here is stated formally below.

� P4: Given NC cores, NB test buses with known widths w1; w2; : : : ; wNB , respectively, and an

upper limit jmax on the number of subdivisions allowed for test bus j, 1 � j � NB , determine

(i) an optimal subdivision of test bus widths, and (ii) an optimal assignment of cores to test

buses such that the total testing time is minimized.

Note that P4 can also be shown to be NP-complete using the method of restriction. A restriction

of P4 to P1 is achieved by setting jmax = 1, 1 � j � NB .

Let xij be a 0-1 variable as de�ned in Section 2. Test bus j can be divided into a maximum of

jmax parts, each part serving as a test bus for a subset of cores in the system. Suppose that these

parts have widths wj1; wj2; : : : wjjmax, respectively, such that
Pjmax

k=1 wjk = wj, 1 � j � NB.

Let yijk be a 0-1 variable de�ned as follows:

yijk =

(
1, if core i is assigned to the kth part of bus j
0, otherwise

The following constraint follows directly from the de�nitions of the 0-1 variables. It denotes

the fact that a core is either assigned to a test bus with its complete width or to a portion of a test

bus (with reduced width).

NBX
j=1

jmaxX
k=1

yijk +
NBX
j=1

xij = 1; 1 � i � NC

If core i is assigned the entire width of bus j then its testing time is (�i�wj +1)ti. (We assume as

before that max
j
fwjg � min

i
f�ig.) On the other hand, if it is assigned to the kth test bus derived

from bus j, then its testing time is (�i � wjk + 1)ti.

The cost function (system testing time) C can now be expressed in terms of the above param-

eters.

C = max
j2f1;2;:::;NBg

f max
k2f1;2;:::;jmaxg

NCX
i=1

(�i � wjk + 1)tiyijk +
NCX
i=1

(�i � wj + 1)tixijg

The right hand side of the above equation is non-linear, but it can be linearized as before by

a sequence of transformations. Let C1j = maxk2f1;2;:::;jmaxg
PNC

i=1(�i � wjk + 1)tiyijk and C2j =PNC
i=1(�i � wj + 1)tixij . The cost function can then be expressed as

C = max
j2f1;2;:::NBg

(C1j + C2j)

20

and the optimization problem can be formulated as:

Minimize C subject to:

1) C � (C1j + C2j), 1 � j � NB

2)
Pjmax

k=1 wjk = wj , 1 � j � NB

3) wj � �i, 1 � i � NC , 1 � j � NB

4) xij = 0 or 1, 1 � i � NC , 1 � j � NB

5) yijk = 0 or 1, 1 � i � NC , 1 � j � NB, 1 � k � jmax

We next linearize constraint 1). Note that C1j �
PNC

i=1(�i � wjk + 1)tiyijk can be linearized

by adding a nonbinary, integer variable rijk for each i; j; k, and adding three constraints as in the

case of P2 in Section 3. This yields the ILP model for P4 shown in Figure 10. It contains at

most NBNC +NBNC l binary variables, NBNC l+NBl+2NB +1 nonbinary, integer variables, and

5NBNC + 3NBNC + 4NB +NBl constraint inequalities, where l = max
j
fjmaxg.

Minimize C subject to:

1. C � (C1j + C2j), 1 � j � NB

2. C1j �

NCX
i=1

((�i + 1)tiyijk � tirijk), 1 � j � NB , 1 � k � jmax

3. rijk �Wyijk , 1 � i � NC , 1 � j � NB, 1 � k � jmax, W is an upper bound on wjk

4. �wjk + rijk � 0, 1 � i � NC , 1 � j � NB, 1 � k � jmax

5. wjk � rijk +Wyijk �W , 1 � i � NC , 1 � j � NB , 1 � k � jmax

6. C2j �

NCX
i=1

(�i � wj + 1)tixij , 1 � j � NB

7.

NBX
j=1

(xij +

jmaxX
k=1

yijk) = 1, 1 � i � NC

8.

jmaxX
k=1

wjk = wj , 1 � j � NB.

9. wj � �i, 1 � i � NC , 1 � j � NB

10. xij = 0 or 1, 1 � i � NC , 1 � j � NB

11. yijk = 0 or 1, 1 � i � NC , 1 � j � NB, 1 � k � jmax

Figure 10: Integer linear programming model for P4.

21

We next generalize P4 to the case where the widths of the test buses also need to be optimally

determined. The formal statement of this problem is given below:

� P5: Given NC cores, NB test buses with total width W , and an upper limit jmax on the

number of subdivisions allowed for test bus j, 1 � j � NB , determine (i) an optimal width

for each test bus, the optimal subdivision of the width of every test bus, and (ii) an assignment

of cores to test buses such that the total testing time is minimized.

Minimize C subject to:

1. C � (C1j + C2j), 1 � j � NB

2. C1j �

NCX
i=1

((�i + 1)tiyijk � tirijk), 1 � j � NB , 1 � k � jmax

3. rijk �Wyijk , 1 � i � NC , 1 � j � NB, 1 � k � jmax, W is an upper bound on wjk

4. �wjk + rijk � 0, 1 � i � NC , 1 � j � NB, 1 � k � jmax

5. wjk � rijk +Wyijk �W , 1 � i � NC , 1 � j � NB , 1 � k � jmax

6. C2j �

NCX
i=1

((�i + 1)tixij � tisij), 1 � j � NB

7. sij � wmaxxij � 0, 1 � i � NC , 1 � j � NB , where wmax is an upper bound on the wj 's.

8. �wj + sij � 0, 1 � i � NC , 1 � j � NB

9. wj � sij + wmaxxij � wmax, 1 � i � NC , 1 � j � NB

10.

NBX
j=1

(xij +

jmaxX
k=1

yijk) = 1, 1 � i � NC

11.

jmaxX
k=1

wjk = wj , 1 � j � NB.

12. wj � �i, 1 � i � NC , 1 � j � NB

13. xij = 0 or 1, 1 � i � NC , 1 � j � NB

14. yijk = 0 or 1, 1 � i � NC , 1 � j � NB, 1 � k � jmax

Figure 11: Integer linear programming model for P5.

The problem P5 can also be shown to be NP-complete by restricting it to P2. This is achieved

by imposing the restriction jmax = 1, 1 � j � NB . The ILP model for P5, shown in Figure 11,

is obtained by combining the ILP models for P2 and P4. Integer variables sij are introduced for

linearization. It contains at most NBNC+NBNC l binary variables, NBNC l+NB l+NBNC+2NB+1

nonbinary, integer variables, and 5NBNC + 6NBNC + 4NB + NBl constraint inequalities, where

l = max
j
fjmaxg as before.

22

Core 10
(s38417)

Core 1
(c432)

Core 2
(c499)

Core 3
(c880)

Core 4
(c1355)

Core 5
(c3540)

Core 6
(c6288)

Core 7
(c7552)

Core 8
(s5378)

Core 9
(s35932)

Test bus 1 Test bus 2

32

31 1

Test bus 1
(out)

(in)

(out)

(in)

4

Test bus 2

1

1

31

32

4

Figure 12: An optimal test bus architecture for S1 with two test buses, total width of 36 bits, and
only one subdivision allowed for the �rst test bus.

Finally, we present experimental results on solving optimization problems P4 and P5. We

considered S1 and S2 with two test buses (1 and 2), and we modeled the situation where the �rst

test bus can fork into at most two branches (1a and 1b). The objective of this set of experiments

was twofold: (i) demonstrate that P4 (P5) provides lower testing time than P1 (P2), and (ii) show

that even non-optimal solutions for P5 provide lower testing time than P2.

We �rst return to the example based on S1 which we presented in Section 2 to illustrate P1.

For this example, w1 = 32, w2 = 16, and an optimal testing time of 411884 cycles was obtained

using P1. By allowing the 32-bit bus to fork into two branches of 27 bits (1a) and 5 bits (1b) each,

we achieve a reduced, but non-optimal, testing time of 409472 cycles using the test bus assignment

(2,2,2,2,2,2,2,2,1b,1a).

Unfortunately, lpsolve did not run to completion for all cases when we attempted to solve P4

and P5. Nevertheless, we allowed it to run for upto 2 hours, after which we tabulated the best

solution obtained. These results (optimal and non-optimal) for P5 are presented in Table 7. The

experimental results show that the added exibility of allowing test buses to be subdivided can

reduce the testing time signi�cantly, espceially for an SOC such as S2. Note also that subdivision

also provides the same minimum testing time with 36-bit width as with a 44-bit-width for S1.

Figure 12 illustrates an optimal test access architecture based on P5 for S1 when the total width

of 36 bits and at most one subdivision of the �rst test bus is allowed.

23

Total test Distribution Distribution Testing Test bus assignment Improvement
width W of W : (w1; w2) of w1 time vector over P2 (percent)

20 (19,1) (1,18) 441404? (1b,1a,1a,1a,1a,1a,2,2,1a,1b) 6.16
24 (23,1) (1,22) 426564? (1b,1a,1a,1a,1a,1a,2,2,1b,1b) 7.53
28 (27,1) (26,1) 412427? (1a,1b,1b,1b,1b,1b,2,2,1b,1a) 8.91
32 (19,13) (1,18) 441404 (1b,1a,1a,1a,2,1a,2,2,2,1b) 0.50
36 (32,4) (31,1) 394012? (1a,1b,1b,1b,1b,1b,2,2,1a,1a) 9.43
44 (32,12) (31,1) 394012? (1a,1b,1b,1b,1b,1b,2,2,1b,1a) 5.53
52 (22,20) (1,21) 397748 (1b,1a,1a,1a,2,1a,1,1,1a,2) 0.39

(a)

Total test Distribution Distribution Testing Test bus assignment Improvement
width W of W : (w1; w2) of w1 time vector over P2 (percent)

24 (23,1) (12,11) 1677735? (1a,1a,1a,1a,1b,1a,2,2,2,2) 23.36
36 (28,8) (16,12) 1672265 (1a,1,1a,1a,1b,1a,2,2,2,2) 23.10
40 (30,10) (18,12) 1672119 (1a,1,1a,1a,1b,1a,2,2,2,2) 22.22
44 (32,12) (17,15) 1633600 (1a,1,1a,1a,1b,1a,2,2,2,2) 23.19

(b)

? Optimum testing time (lpsolve ran to completion)

Table 7: Optimum testing time and optimal width distribution obtained with a given total test
data width and two test buses, one of which is allowed to fork into two branches: (a) S1 (b) S2.

6 Conclusions

We have presented a formal methodology for designing optimal test access architectures for testing

SOC designs. In doing so, we have attempted to provide a formal basis for comparing the several ad

hoc test access architectures that have been proposed in the literature. The proposed methodology

allows designers to explore design options and make appropriate choices. We have examined several

problems related to the design of optimal test architectures. These include the assignment of cores

to test buses, distribution of a given test data width among multiple test buses, and determining

the amount of test data width required to satisfy an upper bound on the testing time. We have

shown that even though the decision versions of these design problems are NP-complete, they can

be e�ciently modeled using integer linear programming for practical instances. We have applied

these models to two non-trivial core-based systems, and solved them using a standard software

package available in the public domain. We are currently extending the ILP models to incorporate

routing and additional power constraints, and we have recently recently reported initial results in

this direction [8].

Our results give rise to a number of useful extensions and new directions for further research.

These are summarized below.

24

� The ILP models need to be generalized to handle test access architectures of the type shown

in Figure 1, where a test bus may fork but not necessarily merge.

� Test access architectures may also be designed hierachically. ILP models should therefore

able able to handle hierarchical compositions, where complex cores embed one or more simple

cores. Moreover, P4 and P5 should be extended to handle recursive sudivision of the test

buses.

� The ILP model descriptions that we have used in our experiments are problem-speci�c, i.e.

they are described in a format speci�c to the problem instance and to the lpsolve program.

This is a cumbersome process. It is far more convenient to use high-level languages such as

AMPL [9] and GAMS [10] that allow the model to be described in a parameterized form that

is independent of the ILP solver and the input data used for a speci�c instance of the model.

� Finally, signi�cant advances have been made in recent years in solving nonlinear integer pro-

grams, and a number of these solvers are now readily available, e.g. e.g. through the Argonne

National Laboratory (http://www .mcs.anl.gov/otc/Server/neos.html). We are examining

the feasibility of using such nonlinear solvers for designing optimal test access architectures.

Acknowledgement

The author thanks Erik Jan Marinissen of Philips Research Laboratories for valuable comments on

an earlier version of this manuscript.

References

[1] J. Aerts and E. J. Marinissen. Scan chain design for test time reduction in core-based ICs.

Proc. International Test Conference, pp. 448{457, 1998.

[2] E. J. Marinissen and M. Lousberg. The role of test protocols in testing embedded-core-based

system ICs. Proc. IEEE European Test Workshop, pp. 70{75, 1999.

[3] M. Berkelaar. lpsolve, version 2.0. Eindhoven University of Technology, Design Automation

Section, Eindhoven, The Netherlands. E-mail: michel@es.ele.tue.nl.

[4] F. Brglez and H. Fujiwara. A neutral netlist of 10 combinational benchmark circuits and a

target simulator in Fortran. Proc. Int. Symp. on Circuits and Systems, pp. 695-698, 1985.

[5] F. Brglez, D. Bryan and K. Kozminski. Combinational pro�les of sequential benchmark

circuits. Proc. Int. Symposium on Circuits and Systems, pp. 1929-1934, 1989.

25

[6] K. Chakrabarty. Test scheduling for core-based systems. Proc. International Conference on

Computer-Aided Design, pp. 391{394, November 1999.

[7] K. Chakrabarty. Test scheduling for core-based systems using mixed-integer linear program-

ming. IEEE Transactions on Computer-Aided Design, October 2000 (accepted for publica-

tion).

[8] K. Chakrabarty. Design of system-on-a-chip test access architectures under place-and-route

and power constraints. Proc. Design Automation Conference, pp. 432{437, 2000.

[9] R. Fourer, D. M. Gay, B. W. Kernighan. AMPL: A Modeling Language for Mathematical

Programming. Scienti�c Press, South San Francisco, CA, 1993.

[10] GAMS Development Corporation. GAMS: A User's Guide Boyd and Fraser Publishing,

Boston, MA, 1993.

[11] M. S. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman and Company, New York, 1979.

[12] I. Ghosh, N. K. Jha and S. Dey. A low overhead design for testability and test generation

technique for core-based systems. Proc. International Test Conference, pp. 50{59, 1997.

[13] I. Ghosh, S. Dey and N. K. Jha. A fast and low cost technique for core-based system-on-chip.

Proc. Design Automation Conference, pp. 542{547, 1998.

[14] I. Hamzaoglu and J. H. Patel. Test set compaction algorithms for combinational circuits.

Proc. International Conf. on Computer Aided Design, pp. 283-289, 1998

[15] V. Immaneni and S. Raman. Direct access test scheme{design of block and core cells for

embedded ASICs. Proc. International Test Conference, pp. 488{492, 1990.

[16] E. J. Marinissen, R. Arendsen, G. Bos, H. Dingemanse, M. Lousberg and C. Wouters. A

structured and scalable mechanism for test access to embedded reusable cores. Proc. Inter-

national Test Conference, pp. 284{293, 1998.

[17] E. J. Marinissen, Y. Zorian, R. Kapur, T. Taylor and L. Whetsel. Towards a standard for

embedded core test: an example. Proc. International Test Conference, pp. 616{627, 1999.

[18] H. P. Williams. Model Building in Mathematical Programming, 2nd ed., John Wiley, New

York, 1985.

[19] P. Varma and S. Bhatia. A structured test re-use methodology for core-based system chips.

Proc. International Test Conference, pp. 294{302, 1998.

26

[20] M. Sugihara, H. Date and H. Yasuura. A novel test methodology for core-based system LSIs

and a testing time minimization problem. Proc. International Test Conference, pp. 465{472,

1998.

[21] Y. Zorian, E. J. Marinissen and S. Dey. Testing embedded-core based system chips. Proc.

International Test Conference, pp. 130{143, 1998.

[22] Y. Zorian. Test requirements for embedded core-based systems and IEEE P1500. Proc.

International Test Conference, pp. 191{199, 1997.

27

